Search results for "Nucleosome assembly"

showing 5 items of 5 documents

ISWI Regulates Higher-Order Chromatin Structure and Histone H1 Assembly In Vivo

2007

Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic a…

Imitation SWINucleosome assemblyTranscription GeneticQH301-705.5RNA-POLYMERASE-IIPROTEINCHROMOSOME ARCHITECTUREGeneral Biochemistry Genetics and Molecular BiologyHistones03 medical and health sciencesNUCLEOSOME REMODELING FACTORHigher Order Chromatin StructureHistone H1NucleosomeAnimalsTRANSCRIPTIONBiology (General)LIVING CELLSMolecular Biology030304 developmental biologyGENE-EXPRESSIONRegulation of gene expressionGeneticsAdenosine Triphosphatases0303 health sciencesGeneral Immunology and MicrobiologybiologyGeneral Neuroscience030302 biochemistry & molecular biologyGenetics and GenomicsCell BiologyChromatin Assembly and DisassemblyChromatinChromatinCell biologyDROSOPHILAHistoneGene Expression RegulationLarvaMutationbiology.proteinLINKER HISTONEGeneral Agricultural and Biological SciencesResearch ArticleDevelopmental BiologyTranscription FactorsDOSAGE COMPENSATION
researchProduct

In vivo assembly of chromatin on pBR322 sequences cloned into yeast plasmids

1989

Abstract In order to study the in vivo assembly of chromatin on prokaryotic DNA templates, we have transformed yeast cells with plasmids pAJ50 and pRB58, which contain pBR322 sequences. In both cases nucleosomes are assembled in vivo on pBR322 DNA, although the nucleosomes are not homogeneous in size. To explore whether there is any preference for nucleosome assembly along pBR322 sequences, we have used an indirect end labeling method. The results indicate that most nucleosomes are placed at random on pBR322, although the probability for histone octamers to interact with some short regions is somewhat reduced. These regions coincide with sequences in which the frequency distribution of nucl…

biologyNucleosome assemblyRestriction MappingSaccharomyces cerevisiaeSaccharomyces cerevisiaeTemplates GeneticMolecular cloningbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinCell biologyBlotting SouthernRestriction mapHistonePlasmidDNA Transposable Elementsbiology.proteinNucleosomeCloning MolecularMolecular BiologyPlasmidsPlasmid
researchProduct

Functional characterization of human nucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone.

1997

Abstract Histones are thought to play a key role in regulating gene expression at the level of DNA packaging. Recent evidence suggests that transcriptional activation requires competition of transcription factors with histones for binding to regulatory regions and that there may be several mechanisms by which this is achieved. We have characterized a human nucleosome assembly protein, NAP-2, previously identified by positional cloning at 11p15.5, a region implicated in several disease processes including Wilms tumor (WT) etiology. The deduced amino acid sequence of NAP-2 indicates that it encodes a protein with a potential nuclear localization motif and two clusters of highly acidic residue…

NAP1L4DNA ComplementaryNucleosome assemblyPositional cloningMolecular Sequence DataMice NudeWilms TumorHistonesMicemental disordersGeneticsNucleosomeAnimalsHumansAmino Acid SequenceCloning MolecularRegulation of gene expressionbiologyBase Sequencemusculoskeletal neural and ocular physiologyfungiGene Transfer TechniquesNuclear ProteinsMolecular biologyRecombinant ProteinsChromatinCell biologyNucleosomesDNA-Binding ProteinsHistoneChaperone (protein)biology.proteinpsychological phenomena and processesMolecular ChaperonesProtein BindingSubcellular FractionsGenomics
researchProduct

Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modificati…

2015

Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chr…

0301 basic medicineTandem affinity purificationHistone-modifying enzymesSaccharomyces cerevisiae ProteinsNucleosome assemblyBiophysicsSaccharomyces cerevisiaeBiologyBiochemistryMolecular biologyMass SpectrometryChromatin remodelingHistones03 medical and health sciences030104 developmental biology0302 clinical medicineHistoneNon-histone proteinBiochemistryHistone methyltransferasebiology.proteinNucleosomeProtein Processing Post-Translational030217 neurology & neurosurgeryJournal of Proteomics
researchProduct

Acetylated nucleosome assembly on telomeric DNAs

2003

Abstract The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on ‘average’ sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease…

Nucleosome assemblyBiophysicsBinding CompetitiveBiochemistryHistonesKluyveromycesHistone H1Histone methylationAnimalsHumansMicrococcal NucleaseNucleosomeHistone codeHistone octamerChemistrynucleosomeChlamydomonasOrganic Chemistryhistone acetylationhistone acetylation; nucleosome; nucleosome positioning; telomeres; thermodynamic stabilityAcetylationDNATelomeretelomeresLinker DNANucleosomesProtein Structure TertiaryBiochemistryChromatosomeBiophysicsthermodynamic stabilityThermodynamicsnucleosome positioningBiophysical Chemistry
researchProduct